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Large-amplitude (geometrically nonlinear) forced vibrations of circular cylindrical

shells with different boundary conditions are investigated. The Sanders–Koiter

nonlinear shell theory, which includes in-plane inertia, is used to calculate the elastic

strain energy. The shell displacements (longitudinal, circumferential and radial) are

ential variable and three different formulations for the longitudinal variable; these three

different formulations are: (a) Chebyshev orthogonal polynomials, (b) power poly-

nomials, and (c) trigonometric functions. The same formulation is applied to study

different boundary conditions; results are presented for simply supported and

clamped shells. The analysis is performed in two steps: first a liner analysis is

performed to identify natural modes, which are then used in the nonlinear analysis as

generalized coordinates. The Lagrangian approach is applied to obtain a system of

nonlinear ordinary differential equations. Different expansions involving from 14 to 34

generalized coordinates, associated with natural modes of both simply supported

and clamped–clamped shells, are used to study the convergence of the solution.

The nonlinear equations of motion are studied by using arclength continuation

method and bifurcation analysis. Numerical responses obtained in the spectral

neighborhood of the lowest natural frequency are compared with results available in

literature.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A great number of studies on large-amplitude (geometrically nonlinear) vibrations of circular cylindrical shells are
available; the literature published before 2003 has been reviewed by Amabili and Paı̈doussis [1]. The problem is also amply
discussed by Amabili in his recent monograph [2]. Here the attention is focused on large-amplitude free and forced
vibrations under harmonic excitation in radial direction. In the majority of the studies available, Donnell’s nonlinear
shallow-shell theory is applied to model the problem; see, e.g. Refs. [3–12]. However, more refined classical theories have
been also used, including Donnell nonlinear shell theory retaining in-plane inertia, the Sanders–Koiter (also referred as
Sanders) nonlinear shell theory, the Flügge–Lur’e–Byrne nonlinear shell theory and the Novozhilov nonlinear shell theory
[9,13–23]. These theories have been compared with each other by Amabili [22]. Nonlinear shell theories retaining shear
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deformation and rotary inertia, developed for thick and composite laminated shells, as the first-order shear deformation
and higher-order shear deformation theories have been also applied to study nonlinear vibration of circular cylindrical
shells [24–28].

The literature analysis shows that several methods were developed in the past for investigating nonlinear vibrations of
circular cylindrical shells with different boundary conditions. Therefore, the present study is a contribution toward
developing a general framework that allows studying circular shells with different boundary conditions, comparing
different expansions of mode shapes.

In the present study, large-amplitude (geometrically nonlinear) forced vibrations of circular cylindrical shells
with different boundary conditions are investigated. The Sanders–Koiter nonlinear shell theory, which includes in-plane
inertia, is used to calculate the elastic strain energy. The shell displacements (longitudinal, circumferential and radial)
are expanded by means of a double mixed series: harmonic functions for the circumferential variable and three
different formulations for the longitudinal variable; these three different formulations are: (a) Chebyshev orthogonal
polynomials [29,30], (b) power polynomials, and (c) trigonometric functions. The same formulation is applied to
study different boundary conditions; results are presented for simply supported and clamped shells. The analysis is
performed in two steps: first a liner analysis is performed to identify natural modes, which are then used in the nonlinear
analysis as generalized coordinates. The Lagrangian approach is applied to obtain a system of nonlinear ordinary
differential equations. Different expansions involving from 14 to 34 generalized coordinates, associated with natural
modes of both simply supported and clamped–clamped shells, are used to study the convergence of the solution.
The nonlinear equations of motion are studied by using arclength continuation method and bifurcation analysis. Numerical
responses obtained in the spectral neighborhood of the lowest natural frequency are compared with results available in
literature.

2. Strain energy

In Fig. 1, a circular cylindrical shell having radius R, length L and thickness h is represented; a cylindrical coordinate
system (O; x, r, y) is considered in order to take advantage of the axial symmetry of the structure; the origin is placed at the
center of one end of the shell. Three displacement fields are shown in Fig. 1: axial u(x, y, t), circumferential v(x, y, t) and
radial w(x, y, t) displacement.

Geometric imperfections can be considered in the theory by means of initial radial displacements w0(x, y); however, in
the numerical results, only perfect shells are considered here.

The nonlinear Sanders–Koiter shell theory is used, which is a classical theory derived by using the following
assumptions: (i) h5R and h5L; (ii) the displacements are of the order of the shell thickness h; (iii) strains are small;
(iv) transverse normal stresses are negligible; (v) the normal to the undeformed middle surface remains straight
and normal to the middle surface after deformation, and no thickness stretching is present (Kirchhoff–Love kinematic
hypothesis); and (vi) rotary inertia is neglected.

Strain components ex, ey and gxy at an arbitrary point of the shell are

ex ¼ ex;0þzkx; (1a)

ey ¼ ey;0þzky; (1b)

gxy ¼ gxy;0þzkxy (1c)

where z is the distance of the arbitrary point of the shell from the middle surface.
Fig. 1. Circular cylindrical shell: coordinate system and dimensions.
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According to Sanders–Koiter nonlinear shell theory, the middle surface strain–displacement relationships and changes
in the curvature and torsion for a circular cylindrical shell are given by [2,31–33]
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where Z¼ x=L is the nondimensional longitudinal coordinate.
The elastic strain energy US of a circular cylindrical shell, neglecting sz as stated by in assumption (iv), is given by [2]

US ¼
1

2
LR

Z 2p

0

Z 1

0

Z h=2

�h=2
ðsxexþsyeyþtxygxyÞdZð1þz=RÞdydz; (3)

where the stresses sx, sy and txy are related to the strains for homogeneous and isotropic material (sz=0, case of plane
stress) by [2]

sx ¼
E

1� n2
ðexþneyÞ; (4a)

sy ¼
E

1� n2
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txy ¼
E

2ð1þnÞ gxy; (4c)

where E is Young’s modulus and n is Poisson’s ratio. By using Eqs. (1)–(3), the following expression is obtained:
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where O(h4) is a higher-order term in h according to the Sanders–Koiter theory. The right-hand side of Eq. (5) can be easily
interpreted: the first term is the membrane (also referred as stretching) energy and the second one is the bending energy,
while the last term couples the membrane and bending energies.

3. Kinetic energy, virtual work and damping

The kinetic energy TS of a circular cylindrical shell, by neglecting rotary inertia, is given by

TS ¼
1

2
rShLR

Z 2p

0

Z 1

0
ð _u2
þ _v2
þ _w2
ÞdZdy; (6)

where r
S

is the mass density of the shell. In Eq. (6) the overdot denotes time derivative.
The virtual work W done by the external forces is written as

W ¼ LR

Z 2p

0

Z 1

0
ðqxuþqyvþqrwÞdZdy; (7)

where qx, q
y

and qr are the distributed forces per unit area acting on the shell in axial, circumferential and radial direction,
respectively.
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The nonconservative damping forces are assumed to be of viscous type and are taken into account by using Rayleigh’s
dissipation function

F ¼
1

2
cLR

Z 2p

0

Z 1

0
ð _u2
þ _v2
þ _w2

ÞdZdy; (8a)

where c is the viscous damping coefficient, which has a different value for each term of the mode expansion. This viscous
damping coefficient is immediately transformed into modal damping ratio.

In-plane forces and bending moments depend on the shell strains; in particular, the following relationships are useful to
apply the boundary conditions:

Mx ¼
Eh3

12ð1� n2Þ
ðkxþnkyÞ ¼ 0; (9a)

Nx ¼
Eh

1� n2
ðex;0þney;0Þ ¼ 0: (9b)

4. Linear vibrations: modal analysis

In order to carry out a linear vibration analysis, in the present section, linear Sanders–Koiter theory is considered, i.e. in
Eq. (5), only quadratic terms are retained.

The best basis for expanding displacement fields is the eigenfunction basis, but only for special boundary conditions
such basis can be found analytically; generally, eigenfunctions must be evaluated numerically.

In order to attack the general problem of circular cylindrical shell vibration, displacement fields are expanded by means
of a double series: deformation in the circumferential direction is presented by harmonic functions, (a) Chebyshev
polynomials are considered in the axial direction.

Let us now consider natural modes of vibration, i.e. a synchronous motion:

uðZ;y; tÞ ¼UðZ; yÞf ðtÞ;

vðZ; y; tÞ ¼ VðZ; yÞf ðtÞ;

wðZ; y; tÞ ¼WðZ; yÞf ðtÞ; (10)

where UðZ;yÞ, VðZ; yÞ and WðZ; yÞ represent the mode shape and f(t) is an harmonic function.
Now the modal shape is expanded in a double series in terms of Chebyshev polynomials T�mðZÞ and harmonic functions:

UðZ; yÞ ¼
XMU

m ¼ 0

XN

n ¼ 0

Um;nT�mðZÞ cosðnyÞ; (11a)

VðZ; yÞ ¼
XMV

m ¼ 0

XN

n ¼ 0

Vm;nT�mðZÞ sinðnyÞ; (11b)

WðZ; yÞ ¼
XMW

m ¼ 0

XN

n ¼ 0

Wm;nT�mðZÞcosðnyÞ; (11c)

where T�mðZÞ ¼ Tmð2Z� 1Þ and Tmð�Þ is the m-th order Chebyshev polynomial of the first kind. The transformation of
coordinates from Z to 2Z�1 is necessary since Chebyshev polynomials are defined between �1 and 1, while T�mðZÞ has
been introduced in order to be defined between 0 and 1. In Eqs. (11a–c) Um,n, Vm,n and Wm,n are unknown coefficients.

For the case of (b) ordinary power polynomials instead of Eqs. (11) one will have the following expressions:

UðZ; yÞ ¼
XMU

m ¼ 0

XN

n ¼ 0

Um;nZm cosðnyÞ; (12a)

VðZ; yÞ ¼
XMV

m ¼ 0

XN

n ¼ 0

Vm;nZm sinðnyÞ; (12b)

WðZ; yÞ ¼
XMW

m ¼ 0

XN

n ¼ 0

Wm;nZm cosðnyÞ: (12c)
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For the case of (c) trigonometric functions, one will have different expansions according to the boundary conditions.
For simply supported boundary conditions the expansion is [22]

UðZ; yÞ ¼
XMU

m ¼ 1

XN

n ¼ 0

Um;n cosðmpZÞcosðnyÞ; (13a)

VðZ; yÞ ¼
XMV

m ¼ 1

XN

n ¼ 0

Vm;n sinðmpZÞsinðnyÞ; (13b)

WðZ;yÞ ¼
XMW

m ¼ 1

XN

n ¼ 0

Wm;n sinðmpZÞcosðnyÞ: (13c)

For clamped boundary conditions, the expansions of u, v and w are given by Amabili [9].

4.1. Boundary conditions

The way to satisfy boundary conditions for expansions involving only trigonometric functions is explained e.g. in
Refs. [9] and [22]. In case of polynomials, boundary conditions are satisfied by applying constraints to the unknown
coefficients in expansions (11) or (12). Some of the coefficients Um,n, Vm,n and Wm,n can be suitably chosen in order to satisfy
boundary conditions.

For the simply supported shell the following boundary conditions are imposed:

w¼ 0; v¼ 0; Mx ¼ 0; Nx ¼ 0 at Z¼ 0;1: (14a 2d)

Initially, the expansion with Chebyshev polynomial is investigated. Eqs. (14a,b) give

WðZ; yÞ ¼
XMW

m ¼ 0

XN

n ¼ 0

Wm;nT�mðZÞ cosðnyÞ ¼ 0 for Z¼ 0;1; (15a)

VðZ; yÞ ¼
XMV

m ¼ 0

XN

n ¼ 0

Vm;nT�mðZÞ sinðnyÞ ¼ 0 for Z¼ 0;1: (15b)

Then, by using Eqs. (15a,b), Eqs. (14c,d) are reduced to

q2WðZ; yÞ
qZ2

¼
XMW

m ¼ 0

XN

n ¼ 0

Wm;n
q2T�mðZÞ
qZ2

cosðnyÞ ¼ 0 for Z¼ 0;1; (15c)

qUðZ; yÞ
qZ ¼

XMU

m ¼ 0

XN

n ¼ 0

Um;n
qT�mðZÞ
qZ cosðnyÞ ¼ 0 for Z¼ 0;1: (15d)

In Eq. (15d) nonlinear terms have been neglected. In fact, since the Rayleigh–Ritz method is used to find the solution, just
geometric boundary condition has to be exactly satisfied.

Such conditions are valid for any y and n, therefore Eqs. (15a–d) are modified as follows:

XMW

m ¼ 0

Wm;nT�mðZÞ ¼ 0;
XMV

m ¼ 0

Vm;nT�mðZÞ ¼ 0;

XMW

m ¼ 0

Wm;n
@2T�mðZÞ
@Z2

¼ 0;
XMU

m ¼ 0

Um;n
@T�mðZÞ
@Z ¼ 0; for n¼ 0;1; . . . at Z¼ 0;1: (16)

For the expansion using power polynomials, the boundary conditions are satisfied in a similar way. Specifically, for power
polynomials equations (14a–d) become

XMW

m ¼ 0

Wm;nZm ¼ 0;
XMV

m ¼ 0

Vm;nZm ¼ 0;

XMW

m ¼ 0

Wm;n
q2
ðZmÞ

qZ2
¼ 0;

XMU

m ¼ 0

Um;n
qðZmÞ

qZ ¼ 0; for n¼ 0;1; . . . at Z¼ 0;1: (17)

The linear algebraic system (16) or (17) is solved in terms of the coefficients U1;n;U2;n;V0;n;V1;n;W0;n;W1;n;W2;n;W3;n for
n¼ 0;1; . . .. Therefore the expansions of u, v and w can be obtained in terms of remaining unknown coefficients.



ARTICLE IN PRESS

Ye. Kurylov, M. Amabili / Journal of Sound and Vibration 329 (2010) 1435–14491440
For the clamped–clamped shell, the following boundary conditions are imposed:

w¼ 0;
qw

qZ
¼ 0; v¼ 0; u¼ 0; at Z¼ 0;1: (18)

The procedure is formally the same as for simply supported boundary conditions; however, the resulting linear system is
solved in terms of the following coefficients U0;n;U1;n;V0;n;V1;n;W0;n;W1;n;W2;n;W3;n for n¼ 0;1; . . . .

4.2. Eigenvalue problem

Eqs. (10) and (11) or (12) are inserted into the expressions of kinetic and potential energies; in particular, the nonlinear
terms are neglected in the potential energy. Then a set of ordinary differential equations is obtained by using the Lagrange
equations. These equations can be immediately decoupled in the variable y.

An intermediate step is the reordering of variables. A vector q containing all variables is built; this vector has a different
structure according to the shell boundary conditions [23]. Specifically, for simply supported edges:

q¼ ðU0;0;U3;0; . . . ;U0;1;U3;1; . . . ;V2;0;V3;0; . . . ;V2;1;V3;1; . . . ;W4;0;W5;0; . . . ;W4;1;W5;1; . . .Þf ðtÞ: (19)

For clamped–clamped edges:

q¼ ðU2;0;U3;0; . . . ;U2;1;U3;1; . . . ;V2;0;V3;0; . . . ;V2;1;V3;1; . . . ;W4;0;W5;0; . . . ;W4;1;W5;1; . . .Þf ðtÞ: (20)

The number of variables needed to describe a mode with n nodal diameters is MT ¼MUþMVþMW � 5.
Lagrange equations for free vibrations are

d

dt

qL

q _qi

� �
�

qL

qqi
¼ 0; i¼ 1;2; . . . ;Nmax; (21)

where L¼ Ts � Us and Nmax ¼MT ðNþ1Þ. Assuming harmonic motion, f ðtÞ ¼ ejot , one obtains

ð�o2MþKÞq¼ 0; (22)

which is the classical eigenvalue problem in nonstandard form; it gives natural frequencies and mode shapes.
The mode shape corresponding to the j-th mode is given by Eqs. (11) or (12), where Um;n, Vm;n, Wm;n are substituted with

UðjÞm;n, V ðjÞm;n, W ðjÞ
m;n, which are the components of the j-th eigenvector obtained from Eq. (22) and the vector function

UðjÞðZÞ ¼ ðUðjÞðZÞ;V ðjÞðZÞ;W ðjÞðZÞÞT is the j-th eigenfunction vector of the original problem.
Mode shapes are normalized by UðjÞðZÞ=maxðUðjÞðZÞÞ, V ðjÞðZÞ=maxðV ðjÞðZÞÞ and W ðjÞðZÞ=maxðW ðjÞðZÞÞ for any Z.
One should mention that for accurate numerical calculations, a very high numerical accuracy is required in calculating

the eigenvectors (mode shapes) and all the coefficients to be introduced in the matrices.

5. Nonlinear vibrations

In the nonlinear analysis, the full nonlinear expression of the potential shell energy (5), containing terms up to fourth
order, is considered. Displacement fields uðZ; y; tÞ, vðZ;y; tÞ and wðZ; y; tÞ are expanded by using the linear mode shapes
obtained in the previous linear analysis:

uðZ; y; tÞ ¼
XM
j ¼ 1

XN

n ¼ 0

UðjÞðZÞ½uj;n;cðtÞ cosðnyÞþuj;n;sðtÞ sinðnyÞ�;

vðZ; y; tÞ ¼
XM
j ¼ 1

XN

n ¼ 0

V ðjÞðZÞ½vj;n;cðtÞ sinðnyÞþvj;n;sðtÞ cosðnyÞ�;

wðZ; y; tÞ ¼
XM
j ¼ 1

XN

n ¼ 0

W ðjÞðZÞ½wj;n;cðtÞ cosðnyÞþwj;n;sðtÞ sinðnyÞ�; (23)

where the total number of degrees of freedom in the nonlinear analysis is 2M � NþM, which is generally much smaller
than Nmax used in the linear analysis. In Eqs. (23) both sin and cos mode shapes in y are introduced since a circular
cylindrical shell is axisymmetric; therefore, both families of modes are participating in the shell response.

Expansions (23) satisfy the boundary conditions and the normalized mode shapes UðjÞðZÞ, V ðjÞðZÞ, W ðjÞðZÞ are known
functions, evaluated in the previous linear analysis, and are expressed in terms of polynomials (except in the case of
expansion with trigonometric functions, see [9,22]). In Eq. (23) the generalized coordinates uj,n,c/s(t), vj,n,c/s(t), wj,n,c/s(t) are
obviously no more harmonic functions. Using expansion (23) one can select suitable shapes for each displacement field
separately, improving convergence and reducing number of degrees of freedom. It is interesting to note that, due to the
normalization, the generalized coordinates represent the maximum amplitude of vibration since maxðUðjÞðZÞÞ, maxðV ðjÞðZÞÞ
and maxðW ðjÞðZÞÞ after normalization are one.

Expansion (23) is inserted in the expressions giving strain and kinetic energies (5) and (6), virtual work (7) and damping (8).
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Only a radial harmonic concentrated force is assumed to act on the shell. The external radial distributed load qr applied
to the shell, due to the radial concentrated force ~f , is given by

qr ¼
~f dðRy� R ~yÞdðx� ~xÞ cosðotÞ; (24)

where o is the excitation frequency, t is the time, d is the Dirac delta function, ~f gives the radial force amplitude positive in
z direction, ~x and ~y give the axial and angular positions of the point of application of the force, respectively; here, the point
excitation is assumed to be located at ~x ¼ L=2, ~y ¼ 0; as a consequence of this excitation, the generalized coordinates with
subscript c are directly excited (driven modes) and those with subscript s are not directly excited (companion modes).

The following notation is introduced for brevity:

p¼ fuj;n;c;uj;n;s;vj;n;c;vj;n;s;wj;n;c ;wj;n;sg
T; j¼ 1; . . . ;M and n¼ 0; . . . ;N: (25)

The generic element of the time-dependent vector p is referred to as pi; the dimension of p is dofs, which is the number
of degrees of freedom used in the mode expansion.

The generalized forces Qj are obtained by differentiation of Rayleigh’s dissipation function and of the virtual work done
by external forces

Qi ¼ �
qF

q _pi

þ
qW

qpi
: (26)

The Lagrange equations of motion for the shell are

d

dt

qT

q _pi

� �
�

qT

qpi
þ

qU

qpi
¼Qi; i¼ 1; . . .dofs; (27)

where qT=qpi ¼ 0. These second-order equations have very long expressions containing quadratic and cubic nonlinear
terms.

The very complicated term giving quadratic and cubic nonlinearities can be written in the form

qU

qpi
¼
Xdofs

k ¼ 1

pkfk;iþ
Xdofs

j;k ¼ 1

pjpkfj;k;iþ
Xdofs

j;k;l ¼ 1

pjpkplfj;k;l;i; (28)

where coefficients f have long expressions that include also geometric imperfections.
The set of ordinary nonlinear differential equations (27) is studied by using numerical continuation methods and

bifurcation analysis.

6. Numerical results

The equations of motion have been obtained by using the Mathematica computer software [34] in order to perform
analytical surface integrals of trigonometric and Chebyshev functions. The generic Lagrange equation j is divided by the
modal mass associated with €pj and then is transformed in two first-order equations. A non-dimensionalization of variables
is also performed for computational convenience: the frequencies are non-dimensionalized dividing by the natural
frequency of the resonant mode and the vibration amplitudes are divided by the shell thickness h. The resulting 2�dofs
equations are studied by using the software AUTO [35] for continuation and bifurcation analysis of nonlinear ordinary
differential equations. The software AUTO is capable of continuation of the solution, bifurcation analysis and branch
switching by using the pseudo-arclength continuation method. In particular, the shell response under harmonic excitation
has been studied by using an analysis in two steps: (i) first the excitation frequency has been fixed far enough from
resonance and the magnitude of the excitation has been used as bifurcation parameter; the solution has been started at
zero force where the solution is the trivial undisturbed configuration of the shell and has been continued up to reach the
desired force magnitude; (ii) when the desired magnitude of excitation has been reached, the solution has been continued
by using the excitation frequency as bifurcation parameter.

6.1. Simply supported shell: Chebyshev polynomial versus trigonometric expansions

A test case of a simply supported circular cylindrical shell is analyzed. Calculations have been performed for a shell
having the following dimensions and material properties: L=0.2 m, R=0.1 m, h=0.247 mm, E=71.02�109 Pa, r=2796 kg/
m3 and n=0.31, which corresponds to a case studied by several authors [5,11,19,22,36]. The mode investigated is (m=1,
n=6) which has one longitudinal half-wave and 6 circumferential waves.

Chebyshev polynomials of 15th power were used to obtain mode shapes of the problem (linear vibration study). Such
high power was chosen to obtain axisymmetrical modes with relatively high number of axial half-waves m; specifically
mode (m=7, n=0) and higher. But since contribution of these modes is small, in farther analysis only modes up to (5,0) are
taken into consideration. Therefore polynomials of 9th power can be used to save computational time. If one has no aim to
study influence of higher modes (both—axisymmetrical and asymmetrical), even polynomials of the 7th power give
accurate results. Natural frequencies of some modes (important modes in the nonlinear model) obtained by using
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Table 1
Comparison of natural frequencies (Hz) for simply supported shell obtained by using Chebyshev polynomials; present theory (polynomials of different

power) versus exact results obtained with trigonometric functions.

Mode (m, n) (1,n) (1,2n) (3,2n) (3,n) (1,0)

7th power Chebyshev polynomial 553.33 882.22 1439.66 3061.19 7784.15

9th power Chebyshev polynomial 553.33 882.22 1455.67 3040.78 7784.15

15th power Chebyshev polynomial 553.33 882.22 1555.56 3040.66 7784.15

Exact with trigonometric function 553.37 882.26 1455.69 3040.69 7784.15
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Fig. 2. Frequency–response curve for simply supported shell (only branch 1 without companion mode participation is shown). , 28 dofs, present

model with Chebyshev polynomial expansion; ——, response computed by Amabili [22]; —�—, backbone curve (free vibration) and forced response,

from Pellicano et al. [11]; ����� , response computed by Chen and Babcock [5]; — �—, backbone curve from Varadan et al. [34]; and — —, backbone curve

from Ganapathi and Varadan [19].
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polynomials of different power are compared in Table 1. The agreement is excellent (only for the 7th power polynomials,
higher modes have 1 percent difference with the exact frequency).

The mode shapes for the three cases presented in Table 1 (7th, 9th and 15th power of polynomials) also perfectly
coincide with the exact solution (shapes are perfect sin and cos), but, in order to obtain higher axisymmetrical modes, it is
necessary to use polynomials of power 15th.

Fig. 2 shows the frequency–response curve (computed by using the model with 28 degrees of freedom) of the driven
mode w1;6;c; companion mode participation is not active. Specifically, the following modes are used in the model:

w : ð1;nÞ; ð1;2nÞ; ð1;0Þ; ð3;0Þ; ð5;0Þ;

u : ð1;nÞ; ð1;2nÞ; ð3;2nÞ; ð1;0Þ; ð3;0Þ; ð5;0Þ;

v : ð1;nÞ; ð1;2nÞ; ð1;3nÞ; ð1;4nÞ; ð3;2nÞ; ð3;4nÞ: (29)

In Eq. (29) each asymmetric mode (i.e. mode with second integer number different from zero) must be counted twice to
obtain the number of degrees of freedom since both cos (driven) and sin (companion) modes are used.

The present results (continuous thick line) are compared to those obtained analytically by Amabili [22], Chen and
Babcock [5], Pellicano et al. [11], Ganapathi and Varadan [19] (only free vibration curve, also named backbone curve),
Varadan et al. [36] (only free vibration curve). The amplitude of the external modal excitation is ~f ¼ 0:0785 N and the
modal damping ratio is z1;6 ¼ 0:0005. The linear circular frequency of the driven and companion modes is
o1;6 ¼ 2p� 553:33 rad=s. Fig. 2 shows reasonably good agreement between the present results and those available in
the literature.

In order to investigate the convergence of the expansion given in Eq. (29), the 28 dofs response is compared with
reduced models; the comparison is shown in Fig. 3. Reduction of the model was performed step by step (with trials that
exclude specific modes), and only the most significant cases, for which influence of the mode is high, are shown in the
figure. In Fig. 3, the bold line shows the full model in Eq. (29); the dashed line represents the same model excluding mode
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Fig. 3. Frequency–response curve for simply supported shell (only branch 1 without companion mode participation is shown). Full 28 dofs model

compared to reduced models. , 28 dofs, present model with Chebyshev polynomial expansion; — —, model excluding mode u(3,2n); and ����� ,

model excluding u(3,2n) and v(1,3n).
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Fig. 4. Frequency–response curve for simply supported shell with companion mode participation; 28 dofs model with Chebyshev polynomial expansion.

—, stable periodic solution; – �–, stable quasi-periodic solution; – –, unstable solutions; BP, pitchfork bifurcation; TR, Neimark–Sacker bifurcation;

1, branch 1; 2, branch 2. (a) Generalized coordinate w1,n,c; and (b) generalized coordinate w1,n,s.
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u(3,2n); the dotted line excludes modes u(3,2n) and v(1,3n). Specifically the two modes u(3,2n) and v(1,3n) give a
contribution increasing the softening type nonlinearity, but their influence is not large; in fact, it can be expected that
modes with 3n and 4n circumferential waves do not contribute significantly (the system is softening so modes with 3n

circumferential waves play a smaller role than 2n modes); a similar consideration can be applied to modes with 3 axial
half-waves (excluding axisymmetric modes that has to reach high axial wavenumber for convergence of the solution).

One also should note that mode having 2n circumferential waves w(1,2n) plays a significant role in the softening
behavior of the shell. The model missing that mode (not shown in the figure) shows strongly hardening behavior.

Fig. 4 shows the frequency–response relationship with companion mode participation (i.e. the actual response of the
shell) for the model in Eq. (29). The main branch 1 in Fig. 4 corresponds to vibration with zero amplitude of the companion
mode w1;6;s. This branch has pitchfork bifurcations (BP) at o=o1;6 ¼ 0:99619 and at 1.00092, where branch 2 appears. This
new branch corresponds to participation of both w1;6;c and w1;6;s, giving a traveling-wave response moving around the
shell; the phase shift between the two coordinates is almost p/2. The companion mode presents a node at the location of
the excitation force and therefore it is not directly excited; its amplitude is different from zero only for large-amplitude
vibrations, due to nonlinear coupling. The appearance of branch 2 is related to the 1:1 internal resonance of w1;6;c and w1;6;s,
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which is due to the axial symmetry of the circular cylindrical shell. This branch appears for sufficiently large excitation, and
it can be observed for vibration amplitude of the order of at least 1/10 of the shell thickness.

Branch 2 undergoes two Neimark–Sacker (torus) bifurcations (TR in the figure) at o=o1;6 ¼ 0:99623 and 0.99675.
Amplitude-modulated (quasi-periodic) response is indicated in Fig. 4 on branch 2 for 99623oo/o1,6o0.99675, that is,
bracketed by the two Neimark–Sacker bifurcations.

6.2. Clamped shell: Chebyshev polynomial versus trigonometric expansions

Calculations have been performed for a shell having the following dimensions and material properties: L=520 mm,
R=149.4 mm, h=0.519 mm, E=1.98�1011 Pa, r=7800 kg/m3 and n=0.3. The mode investigated is (m=1, n=6).

Similarly to the case of simply supported shell, Chebyshev polynomials of 15th power have been used to obtain mode
shapes. Since, as it will be shown, contribution of higher modes is significant, the power of polynomials cannot be reduced
for the case of clamped shell.
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Fig. 5. Frequency–response curve for clamped shell with companion mode participation; 30 dofs model with Chebyshev polynomial expansion. —, stable

periodic solution; – �–, stable quasi-periodic solution; – –, unstable solutions; BP, pitchfork bifurcation; TR, Neimark–Sacker bifurcation; 1, branch 1;

2, branch 2. (a) Generalized coordinate w1,n,c; (b) generalized coordinate w1,n,s; (c) generalized coordinate v1,n,s; (d) generalized coordinate u1,n,c;

(e) generalized coordinate w1,0; (f) generalized coordinate u1,0; (g) generalized coordinate w1,2n,c; and (h) generalized coordinate w3,n,c.
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The response of the circular cylindrical shell subjected to harmonic point excitation of 3 N applied at the middle of the
shell in the spectral neighborhood of the lowest (fundamental) resonance o1;n ¼ 2p� 313:7 rad=s, corresponding to
mode (m=1, n=6), is given in Fig. 5; eight generalized coordinates are shown, just a selection of some of the most
interesting coordinates, in order to show their contribution to the global response of the shell. All the calculations reported
in this section, if not diversely specified, have been performed by using an expansion involving 30 generalized coordinates
(with companion modes), namely:

w : ð1;nÞ; ð1;2nÞ; ð3;2nÞ; ð1;0Þ; ð3;0Þ; ð5;0Þ; ð7;0Þ; ð9;0Þ; ð11;0Þ;

u : ð1;nÞ; ð1;2nÞ; ð3;2nÞ; ð1;0Þ; ð3;0Þ; ð5;0Þ; ð7;0Þ; ð9;0Þ; ð11;0Þ;

v : ð1;nÞ; ð1;2nÞ; ð3;2nÞ: (30)

The main coordinates in Fig. 5 are the driven and companion resonant modes, given in Figs. 5(a) and (b), respectively.
The solution initially presents a single branch 1 with one folding and the typical softening type behaviour; this branch
corresponds to driven mode vibration with zero amplitude of the companion mode. Branch 1 presents a pitchfork
bifurcation around the peak of the response where branch 2 arises and branch 1 loses stability. Branch 2 is the solution
with participation of both driven and companion modes, giving a standing wave plus a travelling wave response around
the shell. Branch 2 loses stability at a Neimark–Sacker (torus) bifurcation where amplitude-modulations of the solution
arise; modulations end at a second Neimark–Sacker bifurcation. Branch 2 ends at a second pitchfork bifurcation where it
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Fig. 6. Frequency–response curve for the clamped shell (without companion modes participation); full model comparing with reduced models. ,

30 dofs, present model with Chebyshev polynomial expansion; — —, model excluding modes u(7,0) and w(7,0); and ����� , model excluding u(3,0) and

w(3,0).
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Fig. 7. Frequency–response curve for the clamped shell (without companion modes participation); full model comparing with reduced models. ,

30 dofs, present model with Chebyshev polynomial expansion; and — —, model excluding modes u(9,0) and w(9,0).
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merges with branch 1 that regains stability. Figs. 5(c) and (d) show the response of in-plane coordinates; Figs. 5(e) and
(f) present axisymmetric coordinates; finally Figs. 5(g) and (h) show the generalized coordinates w1,2n,c and w3,n,c,
respectively.

In order to investigate the convergence of expansion (30), the 30 dofs response is compared with reduced models;
comparison is shown in Fig. 6. The bold line presents the full model given in Eq. (30), dotted line presents the same model
excluding modes u(3,0) and w(3,0), dashed line excludes modes u(7,0) and w(7,0). Modes u(5,0) and w(5,0) have no
significant effect on response of the shell (not shown in the figure). This result shows that the 30 dofs model can be
reduced to the size of the simply supported model without a significant reduction of accuracy.

A farther investigation of the convergence has been performed. In fact, higher order axisymmetrical modes (namely,
u(9,0) and w(9,0)) are strictly required in expansion since absence of these modes changes the shell response from
softening type to strongly hardening; this is shown in Fig. 7.
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Fig. 8. Frequency-response curve for the clamped shell obtained by using Chebyshev polynomial expansions (30 dofs) compared with results obtained by

Amabili [22] with trigonometric functions. , 30 dofs, present model with Chebyshev polynomial expansion; and — —, results from Amabili [22].

Table 2
Comparison of natural frequencies (Hz) for simply supported shell obtained by using power polynomials; present theory (polynomials of different power)

versus exact results obtained with trigonometric functions.

Mode (m, n) (1,n) (1,2n) (3,2n) (3,n) (1,0)

9th power polynomial 553.33 882.22 1455.67 3040.78 7784.15

Exact with trigonometric function 553.37 882.26 1455.69 3040.69 7784.15
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Fig. 9. Frequency–response curve for the simply supported shell obtained by using Chebyshev polynomials ( , solid line), ordinary power

polynomials ( ����� , dotted line) compared to results obtained by Amabili [22] with trigonometric functions (— —, dashed line).
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The present results are also compared in Fig. 8 to those obtained by Amabili [22] using Donnell’s nonlinear theory and
trigonometric functions in the expansions. The agreement between these two results is quite good.

6.3. Power polynomial versus Chebyshev polynomial and trigonometric expansions for simply supported shell

The mode expansion in Eq. (29) is used for both power and Chebyshev polynomials and for trigonometric functions.
To have perfect comparison, power polynomials of the same power of Chebyshev polynomials were used. Calculations
show that high powers (higher than 9th power) are not applicable for ordinary power polynomials, since increasing power
mass and stiffness matrixes become very badly conditioned even using extremely high precision during calculations in
Mathematica [34]. Polynomials of 9th power give acceptable mode shapes (perfect sin and cos) and frequencies but do not
allow considering axisymmetric modes higher than (5,0). Natural frequencies of some modes (important modes in the
nonlinear model) are presented for comparison in Table 2; the agreement with the exact solution is excellent.

Fig. 9 compares the shell response for the three different types of expansions: Chebyshev polynomials, power
polynomials and trigonometric functions. Results are very close each other.

7. Conclusions

The response of circular cylindrical shells with different boundary conditions has been computed by using Sanders–
Koiter theory. Displacements have been expanded by means of a double series: deformation in the circumferential
direction is expanded by using trigonometric functions, while Chebyshev or ordinary power polynomials are applied to
expand the displacements in the axial direction.

The approach used in the present study has the advantage of being suitable for different boundary conditions, and of
being very flexible to structural modifications without complication of the solution procedure. Comparison of present
results with results available in literature has been carried out, showing good agreement.

A minimum mode expansion necessary to capture the nonlinear response of the shell in the neighborhood of a
resonance has been determined and convergence of the solution has been numerically investigated for both simply
supported and clamped shells. Models with about 20 degrees of freedom show very good convergence of results. They can
be slightly reduced, but of a few units, and still presenting reasonably good results. In order to have a further reduction of
the model, specific techniques can be used, as the nonlinear normal modes; otherwise the in-plane inertia has to be
neglected. However, this further reduction can be paid with some loss of accuracy.

Trigonometric functions are very efficient for simply supported boundary conditions. Additional degrees of freedom are
required for different boundary conditions; this decreases the computational efficiency. On the other side, Chebyshev
polynomials require similar degrees of freedom for any boundary condition, representing an advantage. Finally, ordinary
power polynomials present badly conditioned mass and stiffness matrices in the linear problem, so that the calculation of
natural mode shapes of higher modes can become problematic.
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